
 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 1

Inside...

COBOL/370 and LE/370, Article Six 12-25

Natural Getmain Threads in CICS 26

DFSORT Year 2000 Enhancements 27-29

Published by the Department of Information Services Fall/Winter 1996

How to Find Unused GDG Base
Catalog Entries Using MASTERCAT 30-34

Billing of Tape and Disk Data Sets
in the S/390 MVS Environment 35-37

Year 2000 Project Methodology
??by SIG Sub-Committee Methodology

RENOVATION -- APPLICATION CODE CHANGE

his document represents the collective thinking of the State of Washington Year 2000
Special Interest Group (SIG) sub-committee working on a common high level
approach to making state computer applications capable of processing in the new

millennium. The Year 2000 SIG is composed of Information Technology Professionals
designated as Year 2000 project coordinators by their individual state agencies. The high level
conversion approach described below assumes that a detail inventory and analysis of an
agency’s computer applications has been done and that these applications have been grouped
into one or more “application sets” that are ready for renovation. The conversion approach
below (or methodology) covers code conversion, data conversion, and the related testing
associated with these conversion changes.

Prior to using this year 2000 renovation methodology, the following steps should have been
performed:

• An agency specific definition of the meaning of “year 2000 compliant” is documented.

• All programs, copybooks, JCL, PROCs, databases, and files have been inventoried.

The application inventory has been divided into groups which will be converted, tested, and
placed back into production as a unit (“application set”).

(Continued on page 2)

http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 2

Year 2000 Project Methodology
(Continued from page 1)

• All application program source code matches the current production object code and has
been placed in maintenance status.

• A detail conversion plan with schedule is complete for the “application set” about to be
converted.

• An overall cost estimate of conversion is complete.

• The business risk assessment is known.

• A detail cross reference of jobs, files/databases, copybooks, and programs is known.

• All internal and external data bridging requirements with other interfacing applications have
been identified.

• Application code change (i.e. expansion of year date fields from 2 to 4 digits) is the remedy
of choice.

The choice to change the application code should be made after carefully examining the
alternative approaches available to allow the application to function properly into the next
millennium. Alternatives reviewed should have included: code modification, re-engineering,
replacement, and retirement.

Large scale code modification is best done using a “factory-like” approach. Assembly line
processes and a high level of automation are used to expand all date fields within the code to a
full 4-digit year. Additionally, standard date processing routines (known to be cross-century
compliant) will replace existing routines. Temporary or permanent bridging and/or date
windowing may be inserted to affect interfacing to existing file/database formats. The input
transaction (terminals and batch) and output reporting (reports and terminal screens) date
formats will not expand unless specifically needed to eliminate ambiguity. The greatest
productivity is achieved using this methodology and limiting the number and complexity of
code changes. Limited change activity reduces the coding and especially the testing time.

This code modification process takes advantage of the fact that the application code changes
can be made and tested using test facilities provided under the current Washington State
Department of Information Services (DIS) shared operating environments (V1RA, V2DL, or
V4YM).

(Continued on page 3)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 3

Year 2000 Project Methodology
(Continued from page 2)

DIS is currently planning to provide base level cross-century operating system environment
(MVS, security, database, on-line, utilities, etc.) support when vendors can provide cross-
century compliant software levels. A minimum level of application re-testing should be planned
to validate the operating system supports agency application systems properly after being IPL’d
to certain “key” future century dates (i.e. 01/01/2000, 02/29/2000, etc.).

Several very large and/or complex applications exist in multiple state agencies which probably
cannot be converted in a single “application set”. The methodology was designed to
accommodate these very large applications. The sub-committee’s consensus was greatest
flexibility and least interface complexity will, be achieved by separating the program code
change process from the database/file date field expansion process. This separation will be
accomplished by inserting temporary bridges into the programs to allow access to the non-
compliance date data for some period of time until the actual databases and files have finally
been converted. This allows independent schedules to be developed for the two different
processes. Being able to schedule the database/file expansions separately from program
modification greatly reduces the complexity associated with managing large numbers of
application to application interfaces.

The following generic code modification plan should allow maximum productivity across the
multiple affected state agencies while minimizing complexity. This methodology will be
supported with tools and expertise provided by DIS and agency experiences to further enhance
productivity as the process of code conversion proceeds over the next few years. Various
alternative optional scenarios which explain how to use this methodology are documented
following the discussion of the generic “worst case” scenario. The model plan is as follows:

MODEL PLAN (BATCH)

Phase I (Source Code Conversion)

Objective: The output of this phase of the plan is to make all necessary changes to the
application code without the need to change related databases and files. File and database
changes will occur during the next phase of this plan. Date fields within the program are
expanded to include a full 4-digit year (i.e. CCYY instead of just YY) for all date handling
processes. A standard set of century compliant date routines replace internal date processing
routines. Windowing and/or bridging techniques accomplish the interface requirements with
existing files and databases where needed.

(Continued on page 4)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 4

Year 2000 Project Methodology
(Continued from page 3)

ASSUMPTIONS:

1. Expand all date fields containing 2-digit year to digits to include the century
indicator (i.e. CCYY).

2. Replace all called date routines with year 2000 compliant standard date
routines (i.e. Platinum Technologies).

3. Examine in-line user coded date routines and make decision to convert to
standardized routines based on complexity and impact on testing.

4. Insert standard windowing routines as necessary for interfacing to databases
and files (including input and output files).

5. Use bridge routines to bridge from/to databases/files.

6. Leave output reports/screens unchanged (2-digit year) except where
required to remove ambiguity.

7. Leave input dates as 2-digit years except where required to remove
ambiguity.

(Continued on page 5)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 5

Year 2000 Project Methodology
(continued from page 4)

PROCEDURE:

1. Change Source Code (as per above assumptions)

Use automated tools wherever possible. No functional changes should be
necessary or encouraged.

2. Unit Test (if necessary)

If a high degree of automation was used successfully to change the source,
then unit testing may not be necessary. Move the code into a larger group
for regression testing instead.

3. Regression Test (using current century date)

Use the regression test tool (developed during the Vanilla migration project¹
and updated for the Year 2000 project) to assist with this process. Save the
data for later processing in the subsequent phases.

4. Move to Production

The applications should be cross-century compliant at this time, but not
formally proven yet. The proof will occur in later phases.

5. Stop

Phase II (Database/file Conversion)

Objective: The purpose of this phase is to expand the format and content of the date fields in
databases and files to be cross-century compliant, and to verify that actual future date
processing is successful. All application sets associated with these databases and files must
have been modified according to Phase I (above) to make them cross- century compliant prior
to date field expansion. In order to verify that the applications can correctly process using
future year 2000 dates, additional testing is required. Date fields within the databases/files must
be expanded and actually populated with “future dates” using an algorithm appropriate for the
application, and the programs will be rerun using simulated “key” future dates (i.e. 12/31/1999,
01/01/2000, 02/29/2000, etc.).

(Continued on page 6)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 6

Year 2000 Project Methodology
(Continued from page 5)

ASSUMPTIONS:

1. Related programs were made cross-century compliant in Phase I.

2. Archive/history files will not be converted. This implies that permanent
bridging and/or windowing will be necessary to access this data from certain
programs.

3. A limited number of “key” year 2000 dates have been selected which, if
processed correctly during the system tests, will validate that the application
systems are cross-century compliant.

PROCEDURE:

1. Disable Bridges to Test Databases/Files

Turn off switches for internal program bridges and remove external step
bridging in job streams. The physical code can be removed later after all
other migration activities are completed during a clean-up phase.

2. Convert Test Databases and/or Files (for each test case)

Expand and reformat the various date fields such that 2-digit years are now
4-digit years. Use automated utilities where possible. Base test
databases/files on the regression test files from Phase I. Use a combination
of date field expansion and “time warping” (adding a fixed amount of time
to every date field in each database/file, or some other appropriate
algorithm) to build a test case for each “key” year 2000 date.

3. Set Up for Test Date Simulation (for each test case)

The date simulation tool will allow you to specify jobs/steps that will receive
a specific date when they request the current system date. This information
is provided separately by the tester before the job is run using function
provided by the date simulation tool.

(Continued on page 7)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 7

Year 2000 Project Methodology
(Continued from page 6)

4. Perform System Tests (for each test case)

Capture the output from this run for comparison against a base case.

5. Compare Test Run Output Against Expected Output

If you are using the updated regression test tool (from the Vanilla migration
project) you would compare the “P1” output after it has been converted to
4-digit year and has been time warped to match this test case against the test
output just collected in step 4 above.

If outputs match, finish remaining test cases or go on to step 6. If outputs
don’t match then fix program and re-test.

--> Back to step 2 until finished with all cases

6. Disable Bridges to Production Databases/Files

Leave the bridges necessary to access archive/history data.

7. Convert Production Databases and/or Files

Use the same procedures employed to convert the test databases/files. Just
omit the “time warp” functions.

8. Move to Production

The application systems should now be verified year 2000 compliant.

9. Stop

(Continued on page 8)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 8

Year 2000 Project Methodology
(Continued from page 7)

Phase III (Operating System Verification)

Objective: The purpose of this phase is to re-verify that critical client applications continue to
process correctly on a cross-century compliant operating system platform which has been
IPL’d to “key” future dates (i.e. 12/31/1999, 01/01/2000, 02/29/2000, etc.). (Note: DIS staff
has begun and will continue to upgrade the system level software while agency application
renovation activities proceed.) Agencies will perform re-verification testing following DIS’
initial system compliance verification testing. All application sets and their associated databases
and files must have been processed through Phase I and Phase II (above) to make them cross-
century compliant. The compliant operating system environment will be IPL’d using “key” year
2000 dates identified by agencies and certain system tests will be performed by agencies on
their mission critical application systems to re-verify that they continue to process correctly
using these future dates.

ASSUMPTIONS:

1. The most likely test environment is a non-shared TOTALLY independent
hardware and software platform.

2. All libraries, databases, files, etc., must be off-loaded from the current
environment and moved into the newly established platform test
environment.

3. The timing of a platform test environment is dependent on the availability of
cross-century compliant software from vendors.

4. DIS staff has primary responsibility to establish the platform test
environment.

5. The DIS client has primary responsibility to transfer necessary application
components to the platform test environment.

6. The SIG will act as an advisory group to work with DIS to determine
schedule and special requirements for the platform test environment.

(Continued on page 9)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 9

Year 2000 Project Methodology
(Continued from page 8)

PROCEDURE:

1. Build Operating System Software Compliant Environment

DIS will be working with the various vendors to build a cross century
compliant operating system platform. Cross-century compliant vendor
products will be placed into normal production LPARs through the course
of normal maintenance over the next few years. When a high percentage of
the vendor software becomes compliant a year 2000 compliant TEST
environment will be established.

2. Establish Operating System TEST Platform (hardware and software)

At a point in time when a high percentage of the operating environment is
cross-century compliant, DIS will establish a TEST system. It is envisioned
that this environment must be independent and will not share ANY current
DASD or TAPE.

3. DIS Operating System Environment Testing

DIS staff will run through test scenarios for all system components to verify
correct system level processing using selected year 2000 dates.

4. Agency Operating System Environment Testing

Agencies will have access to the operating system test environment for re-
verifying that sensitive application systems continue to process correctly
using the new operating system components operating with year 2000 dates
as they would if it were really in the future.

Note: Since there are no shared resources, client agencies should plan to
offload, using tape, all necessary components such as program libraries,
databases/files, JOB Libraries, CA-7, PROCs, etc.

5. Stop

(Continued on page 10)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 10

The above model plan may be used in a number of different ways to accomplish different
objectives. Phases I and II are where most of the agency activity is concentrated. Phase III
testing is done toward the end of the project after all/most of the year 2000 conversion activity
has been accomplished. In order to use the model plan most effectively, let’s use some example
scenarios to demonstrate its flexibility. In all scenarios listed below, you would put some
selected applications through the Phase III activities to re-verify certain agency mission critical
applications still operate properly in the new base system platform. The scenarios below refer to
Phase I and II activities and assume you may run any applications you choose through Phase
III.

SCENARIO 1 -- Compliance Certification

Suppose you need to certify that a system you believe to be year 2000 compliant is truly ready.
You either developed this application recently with year 2000 compliance in mind or you may
have purchased a package claiming compliance. In any case, you do not need to change the
code or the data, but just certify that it is ready. All you need to do is to proceed to Phase II,
steps 2 through 5 to perform testing using the date simulation tool to help you simulate “key”
year 2000 dates to validate that this system is year 2000 compliant.

SCENARIO 2 -- Smaller Application Sets (Preferred approach)

Many of your systems may be small enough that you can change both the program code and the
associated data at the same time. The determining factors are the amount of time necessary to
keep the application set “frozen” for maintenance purposes, and the number of interfaces to
other application sets. This is the preferred approach if you have the time. This will take the
least amount of effort because you will not have to worry about extra temporary bridging and
windowing necessary to access the non-compliance data. If you are able to do this, then you
perform Phase I followed by Phase II activities except that you would not perform temporary
bridge or window insertions while performing Phase I, step 1, and you would not perform
Phase I, step 4 (Move to Production).

SCENARIO 3 -- Larger Application Sets

Some of your application sets will be too large and/or complex to allow you to convert both
program and data objects at the same time. This is the most complex case and requires using all
three phases in sequence as outlined above. This approach should simplify the overall
conversion while maintaining high efficiency.

Year 2000 Project Methodology
(Continued from page 9)

(Continued on page 11)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 11

Year 2000 Project Methodology
(Continued from page 10)

SCENARIO 4 -- Windowing Only

You may find that some of your applications do not require that the data be changed in the
associated databases and/or files. For these applications you may wish to perform application
code change only to allow proper handling of cross-century dates. This approach will employ
the use of a windowing technique to properly process dates as they transition the century
boundary. You should proceed through Phase I code changes and regression testing, and then
through testing steps 3, 4, and 5 in Phase II for each “key” future date for this application.

For further information or questions, please contact Stan Davis at (360) 902-3151 or visit our
year 2000 web site at: http://www.wa.gov/dis/2000/y2000.htm.

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 12

COBOL/370 and LE/370, Article Six
??by Gary Duffield

his is the sixth in a series of eight articles discussing features of the COBOL/370
programming language. This article discusses capabilities CONDITION/MESSAGE
HANDLING, a feature of COBOL/370 running under LE/370.

Here’s the idea: Instead of every program doing its own error response and message logic, why
not establish a single process that spans across all the programs?

LE/370 supports this idea with Condition Tokens that are used to signal that a problem has
been found. For example, in the previous article we explored one of the CALLABLE
SERVICES that can return a Condition Token in the FEEDBACK-CODE (FC). Now, instead
of having every program examine all possible bad FC values and decide what to do, why not
just have them pass the token along to a CONDITION HANDLER? It can decide on the
proper procedure, issue a message, and return control to the program, or abend, etc.

“Called” programs can signal conditions, but so can your main program. For example, your
logic might test input fields for validity. Instead of dealing with invalid values itself, it could
build a condition token and signal a condition. LE/370 itself can also signal conditions for
events like system abends (S0C4, S0C7, etc).

You don’t have to rely on the Condition Manager’s default handling. You can write your own
condition handler(s) that can be registered with the Condition Manager by your program. If the
program subsequently signals a condition, the Condition Manager will give registered handlers
first crack at the condition. The last one registered will get control first. It can handle the
condition and direct the Condition Manager to return control to the program, it can choose not
to handle it and percolate the condition token, or signal a new one. The handler previously
registered would get the token next. So it goes until it percolates back up to the Condition
Manager. If the process must terminate, it will first change the token to indicate “imminent
termination” and pass it around again. This gives the handlers one last turn to issue a special
message prior to shut down.

To put it simply: You can create a small collection of condition handlers for your shop. Then,
instead of replicating error handling logic in every program, they can just register the
appropriate handlers and signal conditions when appropriate.

(Continued on page 13)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 13

COBOL/370 and LE/370, Article Six
(Continued from page 12)

Working along with this is LE/370’s concept of a central message library. Instead of every
program’s source containing the text of messages it might send, these are collected into a
library. Then each program can ask LE/370 to send a certain message from the library to the
message file (SYSOUT by default). These messages can be tailored to include what LE/370
calls “instance specific information” (text unique to that invocation). It just makes sense to have
the message numbers derive from the condition tokens.

This article discusses the format of a condition token, writing and registering a condition
handler, and signaling a condition.

Format of a Condition Token

The token consists of 12 characters:

Positions Contents Description

 1-2 Severity 0 = Informative
Identifier 1 = Warning

2 = Error
3 = Severe Error
4 = Critical Error

 3-4 Message Can be combined with Facility ID to
Number create a Message ID for message handling

 5 Bits containing:
Case Type of condition token
Severity Severity of condition
Control Origin of Facility ID

 6-8 Facility ID Identifies system signaling the condition
CEE = LE/370
IGY = COBOL/370
You can create your own

 9-12 Instance Unique information about this condition
Specific
Information

(Continued on page 14)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 14

COBOL/370 and LE/370, Article Six
(Continued from page 13)

Writing and Registering a Condition Handler

Who is going to invoke your condition handler? The LE/370 Condition Manager (as long as
the handler has been registered with it so that it knows it exists -- more about that later). What
information will the Condition Manager provide to your handler? The condition token, of
course, and also four characters of data that were given it by the program that registered your
handler. There are two things that the Condition Manager will expect back from your handler:

(1) What action do you want it to take:
RESUME (return control to the program that signaled the condition)
PERCOLATE (give the token to the next handler in line)
PROMOTE (you want to change the token and give to the next handler)

(2) The new condition token (if you choose promote)

Before we look at an example of the code for this, let’s talk a little about those four characters
passed to your handler by the Condition Manager. Four characters seem a pretty meager
allotment. And the fact that its contents are established when the handler is registered and
never change after that further seems to reduce its usefulness.

But remember in the previous article when we used a “pointer” to pass an address? Does that
give you an idea? The program that registers a condition handler could have an area described
in its linkage section where it will put information just before it signals a condition. It could
put the ADDRESS of that area into this four character field when it registers the handler.
Then your handler can use the address to connect to that information. Now there’s no limit to
the amount of information that can be provided to a handler!

(Continued on page 15)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 15

COBOL/370 and LE/370, Article Six
(Continued from page 14)

Now when the handler is invoked, it can check the condition token to see if it’s one that it
should handle. To make the token a little easier to deal with, we might want to “decode” it
first. We use another Callable Service for this:

PROGRAM-ID. SAMPHAND.
...

LINKAGE-SECTION.
01 CONDITION-TOKEN.

05 CONDITION-FIRST-EIGHT PIC X(8).
05 CONDITION-ISI PIC X(4).

01 INFORMATION-ADDRESS USAGE IS POINTER.
01 REQUESTED-ACTION PIC S9(9) BINARY.
01 NEW-CONDITION PIC X(12).

01 PROGRAM-INFORMATION PIC X(80).

PROCEDURE DIVISION USING CONDITION-TOKEN, INFORMATION-ADDRESS,
 REQUESTED-ACTION, NEW-CONDITION.

(Continued on page 16)

That’s how our SAMPHAND example handler will use this field (full sample code is attached
at the end of the article):

CALL ‘CEEDCOD’ USING CONDITION-TOKEN,
 SEVERITY1, MESSAGE-NUMBER,
 CASE, SEVERITY2, CONTROL,
 FACILITY-ID, ISI-INFO, FC.

This service is used to DeCODe the information in a condition token.
CONDITION-TOKEN (12 byte character)

Encoded condition token is passed here.

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 16

COBOL/370 and LE/370, Article Six
(Continued from page 15)

It returns the following:
SEVERITY1 (2 byte binary integer)

The severity associated with the token.
MESSAGE-NUMBER (2 byte binary integer)

The number to be combined with the facility ID for messaging
CASE (2 byte binary integer)

Always a 1 for user built tokens.
SEVERITY2 (2 byte binary integer)

Same value as SEVERITY1.
CONTROL (2 byte binary integer)

Value of 1 if it is an IBM originated facility ID (such as CEE, IGY)
Value of 0 if user supplied facility ID (must start with ‘H’ or greater)

FACILITY-ID (3 byte character)
Facility ID to be combined with message number for messaging

ISI-INFO (Fullword binary integer)
Value 0 if none.

FC (12 byte character)
Condition returned from CEEDCOD service.

If it is one we want to handle, get the information from the program that signaled the condition:

SET ADDRESS OF PROGRAM-INFORMATION TO INFORMATION-ADDRESS.

Once your handler has “done its thing” (Sent messages? Fixed data in the passed information?
Decided to pass on this token?) it needs to set up the return fields for the Condition Manager.
Let’s say it decides to “resume” execution in the original program:

MOVE +10 TO REQUESTED-ACTION.

The value for PERCOLATE is +20; PROMOTE is +30. If the decision is to promote, don’t
forget to construct a new token and place it in the NEW-CONDITION parameter.

Now, how did the original program register our SAMPHAND condition handler? It uses
something called a PROCEDURE POINTER. Previously, we used a Pointer to pass around the
address of data in the linkage section.

(Continued on page 17)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 17

 Now load it with an address. We do that with the ENTRY special name:

SET HANDLER-ADDRESS TO ENTRY ‘SAMPHAND’.

If you compile with the DYNAM option, this address will be supplied at run time. If you use
NODYNAM, you will need to INCLUDE the handler in your link edit process to make it part
of the resulting load module.

Now that we’ve got the address of the condition handler, let’s take care of that information
address we want to pass. Of course we need the area in linkage where the program will later
put the information:

LINKAGE-SECTION.
 PROGRAM-INFORMATION PIC X(80).

And we need to capture its address:

SET INFORMATION-ADDRESS TO ADDRESS OF PROGRAM-INFORMATION.

Now we’re ready to register the handler:

CALL ‘CEEHDLR’ USING HANDLER-ADDRESS, INFORMATION-ADDRESS, FC.

We use the Callable Service CEE(LE/370) HanDLer Register to contact the Condition
Manager. We pass it the address of the SAMPHAND program and the address of the data in
linkage we want made available to it. And, optionally we include the Feedback Code
parameter, depending on whether we want to check the results ourselves, or let the Condition
Manager deal with it.

COBOL/370 and LE/370, Article Six
(Continued from page 16)

WORKING-STORAGE SECTION.
01 HANDLER-ADDRESS USAGE IS PROCEDURE-POINTER.
01 INFORMATION-ADDRESS USAGE IS POINTER.

A procedure pointer is used to pass around the address of a program instead. So, first the
original program must define both pointers:

(Continued on page 18)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 18

Then COPY this member after your definition of the first eight characters of the condition
token. When it’s time to signal this condition, you just:

SET DIS0123 TO TRUE.

The handler can then do the same thing. And instead of using DCOD, it can just say:

IF DIS0123 ...

COBOL/370 and LE/370, Article Six
(Continued from page 17)

CALL ‘CEENCOD’ USING SEVERITY1, MESSAGE-NUMBER,
 CASE, SEVERITY2, CONTROL,

 FACILITY-ID, ISI-INFO,
 RESULTING-TOKEN, FC.

88 DIS0123 VALUE X’0002007B50C49E20’.
88 DIS0124 VALUE X’00020 ...

 ... ETC ...

This service is used to eNCODe the information into a condition token. See the CEEDCOD
information above for the meanings of the parameters.

We’ve used NCOD and DCOD here just to show how these tokens can be built. However, a
much better approach is to build them once and save them in a COPY member that has 88 level
names for all of them. Something like this:

Signaling a Condition

We’ve got our condition handler written and registered. Our program is banging along, doing
its thing, when suddenly it sees a problem (invalid data or some such). How does it signal the
condition to the condition handler?

First, we have to build a condition token. We use another Callable Service for this:

(Continued on page 19)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 19

In any event, we now have our token. We would move any pertinent data to the program-
information field in the linkage area, then we’re ready to signal the condition:

CALL ‘CEESGL’ USING CONDITION-TOKEN, QDATA, FC.

The QDATA parm is an optional full word binary integer that can be used in conjunction with
the ISI info. Our example doesn’t use it, and just leaves it with a 0 value.

See how simple? I know, I know ... but it really isn’t that bad once you start using it. Full
example code attached.

When the program that registers a handler is ready to finish, it should unregister the handler.
Can you guess?

CALL ‘CEEHDLU’ USING HANDLER-ADDRESS, FC.

Yep. “HanDLer Unregister”. Technically, you don’t HAVE to unregister it, but remember, the
Condition Manager passes around the “termination imminent” token before it shuts down the
process (even with normal shut down). Do you want your handler being invoked for that? No?
Then unregister it before shut down!

Some of you have probably thought of this: What if the handler has a bug that triggers a
condition? Oops. COBOL/370 doesn’t handle recursion well, and that’s just what you’re going
to get. The new condition will trigger the Condition Manager, who will let your condition
handler have first crack, which will hit the same bug again, which will trigger another condition,
which will ... well, you get the idea.

Fortunately there’s a limit to this silliness. The DEPTHCONDLMT (depth of nested conditions
limit -- default value of 10) run time option will kick in and cause an ABEND.

The next article will discuss the ability to use information from condition tokens to send
messages.

More information on CONDITION HANDLING can be found in:
IBM SAA AD/Cycle Language Environment/370 Programming Guide (SC26-4818)

COBOL/370 and LE/370, Article Six
(Continued from page 18)

(Continued on page 20)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 20

 ID DIVISION.

 PROGRAM-ID. SAMPHAND.
 AUTHOR. GARY DUFFIELD.
* THIS PROGRAM IS USED TO TEST COBOL/370 condition
* handling. It will respond to a condition signaled
* by ORIGPGM. It will fix the data and resume.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 FC pic x(12).
 01 feedback-first-eight redefines FC
 pic x(8).
 88 CEE000 VALUE X'0000000000000000'.

 01 token-fields.
 05 severity1 pic s9(4) binary.
 05 message-number pic s9(4) binary.
 05 case pic s9(4) binary.
 05 severity2 pic s9(4) binary.
 05 cntrol pic s9(4) binary.
 05 facility-id pic xxx.
 05 isi-info pic s9(9) binary.

 LINKAGE SECTION.

 01 condition-token pic x(12).
 01 information-address usage is pointer.
 01 requested-action pic s9(9) binary.
 88 resume value +10.
 88 percolate value +20.
 88 promote value +30.
 01 new-condition pic x(12).

 01 program-information.
 05 name-in pic x(20).
 05 id-no pic 9(9).

COBOL/370 and LE/370, Article Six
(Continued from page 19)

(Continued on page 21)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 21

 PROCEDURE DIVISION using condition-token, information-address,
 requested-action, new-condition.

 main-routine.

 * Decode the condition token
 call 'CEEDCOD' using condition-token,
 severity1, message-number,
 case, severity2, cntrol,
 facility-id, isi-info, FC.
 * If decode fails, promote the FC as the new condition token
 if not cee000
 move FC to new-condition
 set promote to true
 else
 * Check if it is a token we want to handle
 if facility-id = 'DIS'
 evaluate true
 when message-number = 123
 set address of program-information to
 information-address
 * pretend we use the name-in field to look up their
 * correct id-no in a table.

* Suppose the correct id-no is all 8’s:
 move '888888888' to id-no
 set resume to true
 * if some other token then percolate it
 when other
 set percolate to true
 end-evaluate
 end-if
 end-if.
 goback.

COBOL/370 and LE/370, Article Six
(Continued from page 20)

(Continued on page 22)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 22

COBOL/370 and LE/370, Article Six
(Continued from page 21)

(Continued on page 23)

 ID DIVISION.

 PROGRAM-ID. ORIGPGM.
 AUTHOR. GARY DUFFIELD.
 * THIS PROGRAM IS USED TO TEST COBOL/370 condition
 * handling. It will register a condition handler and
 * then signal a condition.
 EJECT

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.
 SELECT FILE-IN ASSIGN UT-S-INPUT.
 SELECT FILE-out ASSIGN UT-S-OUTPUT.

 DATA DIVISION.

 FILE SECTION.

 * THIS IS THE INPUT FILE

 FD FILE-IN
 RECORDING MODE IS F
 LABEL RECORDS ARE STANDARD
 RECORD CONTAINS 80 CHARACTERS
 BLOCK CONTAINS 0 RECORDS
 DATA RECORD IS INput-record.

 01 INput-record.
 05 name-in pic x(20).
 05 id-no-in pic 9(9).
 05 salary-in pic 9(7)v99.

 FD file-out
 RECORDING MODE IS F
 LABEL RECORDS ARE STANDARD
 RECORD CONTAINS 80 CHARACTERS
 BLOCK CONTAINS 0 RECORDS
 DATA RECORD IS output-record.

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 23

COBOL/370 and LE/370, Article Six
(Continued from page 22)

 01 output-record pic x(80).

 WORKING-STORAGE SECTION.

 01 FC pic x(12).
 01 feedback-first-eight redefines FC
 pic x(8).
 88 CEE000 VALUE X'0000000000000000'.

 01 storage-fields.
 05 heap-id pic s9(9) binary value 0.
 05 storage-needed pic s9(9) binary value 80.
 05 storage-address usage is pointer.

 01 condition-token-fields.
 05 severity1 pic s9(4) binary.
 05 message-number pic s9(4) binary.
 05 case pic s9(4) binary value 1.
 05 severity2 pic s9(4) binary.
 05 cntrol pic s9(4) binary value 0.
 05 facility-id pic xxx value 'DIS'.
 05 isi-info pic s9(9) binary value 0.
 05 condition-token pic x(12).

 01 condition-handler-field.
 05 handler-address usage is procedure-pointer.
 05 information-address usage is pointer.

 01 SWITCHES.
 05 EOF-SWITCH PIC XXX VALUE 'NO '.
 88 END-OF-input VALUE 'YES'.

 LINKAGE SECTION.

 01 program-information pic x(80).

(Continued on page 24)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 24

COBOL/370 and LE/370, Article Six
(Continued from page 23)

(Continued on page 25)

 PROCEDURE DIVISION.

 main-routine.

 * get some storage for program-information
 call 'CEEGTST' using heap-id, storage-needed,
 storage-address, FC.
 set address of program-information to storage-address.

 * register the handler
 set handler-address to entry 'SAMPHAND'.
 set information-address to address of program-information.
 call 'CEEHDLR' using handler-address, information-address,

 FC.
 * open the files and get the first record
 OPEN INPUT FILE-IN
 output file-out.
 READ FILE-IN
 AT END set end-of-input to true.

 * main loop
 PERFORM UNTIL end-of-input

 * look for bad id number
 if id-no-in = '999999999'

 * move input record to linkage, build condition token
 move input-record to program-information
 move 2 to severity1
 severity2
 move 123 to message-number
 call 'CEENCOD' using severity1, message-number,
 case, severity2, cntrol,
 facility-id, isi-info,
 condition-token, FC
 end-call

 * signal the condition
 call 'CEESGL' using condition-token, FC
 end-call

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 25

 * move the corrected id from linkage back to input buffer
 move program-information to input-record
 end-if

 * write the output, read next input
 move input-record to output-record
 write output-record
 READ FILE-IN
 AT END set end-of-input to true
 end-read
 end-perform

 * close files, unregister handler and shut down
 CLOSE FILE-IN
 file-out.
 call 'CEEHDLU' using handler-address, FC.
 STOP RUN.

COBOL/370 and LE/370, Article Six
(Continued from page 24)

The remaining articles of this series will be published in future issues of the DIS Technical
Broadcast.

If you have any questions about these articles, please contact Gary Duffield through the Help
Desk at (360) 753-2454. If you would like to obtain a copy of all eight, contact Charie Martin
at (360) 902-3112.

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 26

Natural Getmain Threads in CICS
??by Ian Heath

ICS/Database support is currently using what are called “program threads.” Program
threads are data assembled together and linked as programs by Natural as a work area.
The storage for a program thread is obtained from shared storage and is not protected

by the transaction isolation feature offered by CICS 4.1.

Benefits provided by transaction isolation feature are:
• reducing system outages
• protecting application data
• protecting CICS from applications that pass invalid addresses, and
• aiding application development

Using the Natural Getmain threads we would enjoy the benefits of the transaction isolation
feature. To use Getmain threads with this feature, we would identify all transactions associated
with the Natural application, assign a thread group of TYPE=GETM, assign each of the
transactions a TCLASS value, and turn on the transaction isolation feature for the CICS
region(s) in which the application operates.

A reassuring point to be made here is that to go back to the old program threads would NOT
require a recycle of the CICS region(s). A rename of one Natural CICS interface module, the
control block module, and a CICS new copy of the same module is all that is required.

CICS/Database support is currently in the final stages of a project that will enable the CICS
regions to utilize the transaction isolation feature. A Technical bulletin will be sent out to
discuss the use of the transaction isolation feature.

If you have any questions about program threads, please call Ian Heath, S/390 ADABAS
Support at (360) 902-3109.

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 27

DFSORT Year 2000 Enhancements
??by Pete Marshall

epartment of Information Services (DIS) is in the process of applying enhancements to
DFSORT which will add new features designed to make year 2000 processing easier.
These enhancements will allow users to set a ‘century window’ in DFSORT, as well as

allowing for two-digit year processing.

The following information is condensed from the IBM documentation that accompanied the
enhancement.

SETTING THE CENTURY WINDOW FOR TWO-DIGIT YEARS

A new option will allow you to specify the century window you want DFSORT to use for
interpreting two-digit years. A century window spans a 100 year period, and is used to control
how the two-digit years 00 to 99 are interpreted. For example, 56 will be interpreted as 1956 if
you set the century window to 1950-2049 or as 2056 if you set the century window to 1990-
2089.

DFSORT will allow you to set either a fixed century window or a sliding century window as
follows:

• Y2PAST=f specifies a fixed century window starting at f, where f can be any value between
1000 and 3000. For example, Y2PAST=1985 will always start the century window at 1985,
resulting in a century window of 1985-2084.

 You might want to use a fixed century window for two-digit year data that you started
collecting in some particular year (for example, 1985 in this case).

• Y2PAST=s specifies a sliding century window starting s years before the current year,
where s can be any value between 0 and 100. For example, if the current year is 1996,
Y2PAST=80 starts the century window at 1996 - 80 or at 1916, resulting in a century
window of 1916-2015. When 1997 rolls around, Y2PAST=80 starts the century window at
1917 (1997-80), which sets the century window to 1917-2016. Y2PAST=s causes the
century window to auto-matically slide year by year.

You might want to use a sliding century window for two-digit year data you collect over a
rolling time period.

Thus, the Y2PAST option allows you to control how DFSORT interprets the two-digit years
00 to 99 for various sets of data.

(Continued on page 28)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 28

DFSORT Year 2000 Enhancements
(Continued from page 27)

NOTE: The DIS installation default will be Y2PAST=80 which sets a sliding window
starting 80 years before the current year. You can use the Y2PAST run-time option to
override this for different applications.

SELECTING NEW FORMATS FOR TWO-DIGIT YEAR DATES

DFSORT will provide several new formats that will help you deal with a wide variety of dates
containing two-digit years.

You will be able to use the new Y2C, Y2Z, Y2P and Y2D formats to identify your two-digit
character, zoned decimal, packed decimal and decimal year data, respectively. DFSORT will
correctly sort, merge and transform two-digit years identified with these formats as if they
were four-digit years, using your specified fixed or sliding century window.

You will be able to use the new PD0 format to identify your two-digit packed month data and
two-digit and three-digit packed day data. DFSORT will correctly sort, merge and transform
months and days identified with these formats.

SORTING AND MERGING ON TWO-DIGIT YEAR DATES

You will also be able to use DFSORT's new formats (Y2C, Y2Z, Y2P, Y2D and PD0) to
correctly sort and merge many different kinds of character, zoned decimal and packed decimal
dates, including those with two-digit years, according to the century window you specify.

For each sort or merge application involving two-digit years, you need to decide whether to
use DIS’s default century window (sliding window, current year minus 80) or set a different
century window for the application using the Y2PAST run-time option.

TRANSFORMING TWO-DIGIT YEAR DATES TO FOUR-DIGIT YEAR DATES

You will be able to use DFSORT's new formats (Y2C, Y2Z, Y2P, Y2D and PD0) to transform
many different kinds of dates, including those with two-digit years, according to the century
window you specify. Using the OUTREC operand of the OUTFIL statement, you will be able
to:

• convert two-digit year fields in character, zoned decimal and packed decimal format to
four-digit year fields in character format (for example, convert C'yy' to C'yyyy’)

(Continued on page 29)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 29

DFSORT Year 2000 Enhancements
(Continued from page 28)

• convert month and day fields in zoned decimal and packed decimal format to month and
day fields in character format (for example, convert P'ddmmyy' to C'ddmmyyyy')

• rearrange the order of the year, day and month (for example, convert Z’mmddyy’ to
C’yyyymmdd')

• insert separators between the year, month and day (for example, convert P’yyddmm’ to
C'dd.mm.yy' or C'mm/dd/yyyy')

For more information on DFSORT, visit IBM’s DFSORT web site at:
http://www.storage.ibm.com/software/sort/srtmhome.htm, or call (360) 753-2454 and ask
to be connected to Pete Marshall.

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 30

How to Find Unused GDG Base Catalog
Entries Using MASTERCAT
??by Jim Collinsworth

ASTERCAT is a powerful tool for querying the ICF catalogs. It provides information
and functions not readily available through IDCAMS or other utilities. Using
MASTERCAT is a fast and easy way to find and delete unused Generation Data

Group (GDG) bases, thereby speeding up your catalog searching and job processing. To find
and delete old GDG bases with no active generation data sets:

• from the Main Menu, select item S for Storage, press the ENTER key and the Storage
Utilities Menu will be displayed.

• select MC for MASTERCAT and press the ENTER key.

• from the ISM Primary Option Menu (Figure 1), select option A for Find Dataset Names and
press the ENTER key.

Note: Options B, E, P and S are not available for your use.

VMCMENU0.0 ------------ ISM - Primary Option Menu - V3.90 ----------------
OPTION ===> A

 MASTERCAT Feature: VSAMAID Feature:

 A Find Dataset Names V Entry Panel
 B Browse a Dataset N Dataset Modeling
 E Edit Dataset Records H History Maintenance
 G Global MASTERCAT Help D History Directory
 P Verify Product Codes
 S MASTERCAT Security

Figure 1

Next the MASTERCAT Data Set Locator screen (Figure 2) is displayed on page 33. This is
the screen where you fill in your search options. There are four fields on this screen:

(Continued on page 31)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 31

How to Find Unused GDG Base Catalog
Entries Using MASTERCAT
(Continued from page 30)

Entry Name - used to specify the names of entries for MASTERCAT to find in catalogs. The
name - selection conventions are:

Full data set name
Example:

LEVEL1.LEVEL2.FILE

Partial data set name
Data set name with any combination of the four masking characters

+ - individual characters
* - levels or nodes
‘**’ or ‘++’ indicates match anything beyond this point
a character string enclosed in quotes indicates match anywhere in a name

Example:
LEVEL+.FILE selects LEVEL1.FILE or LEVEL2.FILE
LEVEL1.* selects LEVEL1.FILE or LEVEL1.DATA
LEVEL1.** selects everything with the 1st node of LEVEL1
LEVEL1.++ selects everything with the 1st node of LEVEL1
LEVEL1.*.’JCL’ selects all data sets with LEVEL1 in the 1st node,

anything in the 2nd node and JCL anywhere after
the second node

IMPORTANT NOTE: Never put the characters ‘**’ or ‘++’ or the word ‘ALL’ by
itself in the ‘Entry Name’ field. This is a generic data set name search of all catalogs and
all data sets. This activity involves a significant amount of overhead and can be costly.

Catalog Name - used to specify the names of the catalogs MASTERCAT will need to search.
This entry will be left blank.

Search Items - further refines the selection process to look for entries in catalog data fields
which have certain values. The variables are defined as follows:

fieldname - the name of a catalog data field.

(Continued on page 32)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 32

How to Find Unused GDG Base Catalog
Entries Using MASTERCAT
(Continued from page 31)

operator - the operator for the type of comparison to make between the fieldname and
the value. The operator may be one of the following:

= fieldname equal to value
¬ fieldname not equal to value
> fieldname greater than value
< fieldname less than value

value - a value against which to test the contents of the fieldname.

Use AND or OR to indicate the logical connection between two fieldname operator
value expressions.

Show Items - allows you to display specific catalog information.

For more information, move your cursor to the line of the item you would like help with and
press your PF1 key. Help screens will appear which will give you the information you are
requesting. For a list of search or show items, press the PF4 key.

How to find unused GDG base definitions.

Fill in the MASTERCAT Data Set Locator screen with:

• Entryname(s) => your generation data set(s) names or patterns

• Search item(s) => (TYPE = GDG) AND (GATCNT = 0)
This criteria will search for catalog entry type equal to generation data set and active
generation count equal to zero.

• Show item(s) => CREATION
Creation will show either the date the GDG base was created or the date the last
generation was created.

(Continued on page 33)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 33

How to Find Unused GDG Base Catalog
Entries Using MASTERCAT
(Continued from page 32)

MFINDER .3 --------- MASTERCAT - Data Set Locator - V3.90 ------------
COMMAND ===>

Entry Name ===> DATA123.DSK.BKUP.**

Catalog Name ===>

Search Items ===> (TYPE = GDG) AND (GATCNT = 0)

Show Items ===> CREATION

The following is a sample screen:

Figure 2

The results of the search are displayed in the MASTERCAT Data Set Selection (Figure 3)
screen. The entries are listed within each user catalog. To delete the unused GDG base, type
the word DELETE on the line to the left of the GDG base entry and press the ENTER key.

MPICKER .7 ------- MASTERCAT - Data Set Selection - V3.90 ---- ROW 0001 OF 0038
COMMAND ===> SCROLL ===> PAGE
 Items: 1-3 of 3
Current Catalog: ICFCAT.USER.AGY155
COMMAND ENTRY-NAME Creation-Date Type Gatcnt
------- ---
 CATALOG: ICFCAT.USER.AGY155
_______ DATA123.DSK.BKUP.ESADLB
 FRI 02 APR 1993 092 GDG 0
_______ DATA123.DSK.BKUP.ESARES
 FRI 02 APR 1993 092 GDG 0
_______ DATA123.DSK.BKUP.M28RES
 FRI 02 APR 1993 092 GDG 0
DELETE_ DATA123.DSK.BKUP.PANVL2
 FRI 02 APR 1993 092 GDG 0
_______ DATA123.DSK.BKUP.PAN901
 FRI 02 APR 1993 092 GDG 0
_______ DATA123.DSK.BKUP.PSYS01
 FRI 02 APR 1993 092 GDG 0
_______ DATA123.DSK.BKUP.PSYS02
 FRI 02 APR 1993 092 GDG 0
_______ DATA123.DSK.BKUP.PSYS03

Figure 3

(Continued on page 34)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 34

How to Find Unused GDG Base Catalog
Entries Using MASTERCAT
(Continued from page 33)

The MASTERCAT Interactive IDCAMS screen (Figure 4) shows the IDCAMS command
which will be executed. To execute the command press PF5, and to cancel press PF3.

MAMS .a ------- MASTERCAT - Interactive IDCAMS - V3.90 ---- ROW 0001 OF 0005
COMMAND ===> SCROLL ===> CSR
 COL 0001 OF 0132
CMD IDCAMS PARAMETERS INPUT AREA
--- --
 _ DELETE -
 _ (DATA123.DSK.BKUP.PANVL2) -
 _ GDG -
 _ NOFORCE -
 _ NOPURGE

Figure 4

A confirmation screen (Figure 5) is displayed after the deletion. If you receive an error
message, press PF1 for more information.

MAMS .5 ------- MASTERCAT - Interactive IDCAMS - V3.90 ---- ROW 0001 OF 0011
COMMAND ===> SCROLL ===> CSR
 MAXIMUM CONDITION CODE WAS 0 COL 0001 OF 0132
CMD IDCAMS PARAMETERS INPUT AREA
--- --
 IDCAMS SYSTEM SERVICES TIME:

 _ DELETE -
 _ (DATA123.DSK.BKUP.PANVL2) -
 _ GDG -
 _ NOFORCE -
 _ NOPURGE
 IDC0550I ENTRY (B) DATA123.DSK.BKUP.PANVL2 DELETED
 IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

 IDC0002I IDCAMS PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 0

Figure 5

MASTERCAT is a powerful catalog query tool with multiple uses. The Storage Management
group will document other uses of this tool in upcoming Technical Broadcast. If you have any
questions, please call Jim Collinsworth at (360) 902-3588.

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 35

Billing of Tape and Disk Data Sets in the
S/390 MVS Environment
??by Kimberly Starkey

What Reports are Provided by Storage Management?

epartment of Information Services (DIS) Storage Management produces two reports
for all agencies that utilize Tape and Disk storage. These reports provide various
information including which work authorization numbers or billing account codes are

used to accummulate charges.

The reports are distributed monthly, on-line, through the Report Distribution System (RDS)
and in printed form. The Tape Utilization Report has three sections: local round for 9-track
tape, local square for 18/36-track tape and remote offsite square for tapes registered to the
offsite service. The Tape Utilization Report contains the volser, expire date, creating job name,
data set name, create date, out of area, programmer name, days in and accumulated cost in
dollars. The Disk Utilization Report contains the volser, delete status, data set name, storage
type, create date, used date, allocated tracks, used tracks, accumulated mega-byte hours and
accumulated cost in dollars.

To Calculate the Cost of Tape and Disk Storage.

The accumulated charges for tape media are based on tape days. The rates are .096 for 9-track
(round reel), .08 for 18/36 track (cartridge) and .14 for remote offsite tapes. When the tape
media is expired the agency no longer accumulates charges. The only exception is if the tape is
checked out to the agency and given an OUTCODE of SHRT. Even though the tape may have
reached its expiration date the agency will continue to accumulate charges until it is returned
and checked back in.

Example: To calculate the charges of an 18 track cartridge for 7 days:

7 * .08 = .56 total of 56 cents.

The accumulated charges for disk storage are based on mega byte hours. The rate is .0008. You
may note on the report that a disk data set is listed more than once. This occurs if the data set is
deleted and re-created by your process or a storage management process. The billing reflects
the amount of time the data set resided on each of the volumes.

(Continued on page 36)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 36

Billing of Tape and Disk Data Sets in the
S/390 MVS Environment
(Continued from page 35)

Example: To calculate the charges for 1 cylinder for 30 day month
1 cylinder is 15 tracks
1 track is 58786 bytes
15 tracks is 881790 bytes
881790 bytes divided by one million is .88 megabytes (MB)
.88 megabytes * 30 days * 24 hours * .0008 = .51 cents

To Control Where Tape and Disk Data Sets Accumulate charges.

Tape and disk storage accumulate charges based on entries in a table maintained by the Storage
Management group. The billing account code on your job card is not used. To review how
your storage is charged, Storage Management provides three files per agency. These files can
be accessed on-line through the TSO Data Set List Utility option (3.4). These files are updated
every Monday morning and will reflect changes made for the past week.

The files are:

FBIL155.PPATTERN.AGYxxx where XXX is your agency number.

This file contains all the entries used by the metering process. To reduce the number of
entries in the table there are three masking characters available.

? - one character
* - remainder of the node
/ - anything after this

FBIL155.PTAPE.DEFAULT.AGYxxx
FBIL155.PDISK.DEFAULT.AGYxxx

These files contain all the data sets that were not charged to a specific billing account code.
When a data set does not match an existing pattern, the agency default account code is
used. To remove these data sets from the default billing account, an account code is needed
to be assigned to the data set name, so an entry can be added to the billing table.

(Continued on page 37)

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 37

Billing of Tape and Disk Data Sets in the
S/390 MVS Environment
(Continued from page 36)

To Provide Information to Storage Management.

When a new high level qualifier (HLQ) is defined, notify Storage Management of the billing
code. Also, when a HLQ is taken out of service, it should be deleted from the billing account
table.

To make additions, deletions, and instructions on how to condense the entries, contact or send
updates to S/390 Storage Management section via MSMail: DIS STORMGMT (within DIS),
FAX: (360) 586-8992, Campus Mail: 42445 or to an exchange file on-line.

To provide an exchange file, copy entries from the FBIL155.PPATTERN.AGYxxx file to your
exchange file and make the appropriate changes. Notify us when the file is ready and we will
replace the entries in original billing account table. You must follow the format of the
FBIL155.PPATTERN.AGYxxx file.

Example:

‘15500 000000DATA.SET.NAME./ ‘ STMGMT 96278

If you need assistance or have any questions, please contact Storage Management at (360)
902-3588.

Column Description
1 Single Quote

2 - 6 Agency and SubAgency Number
7 Blank Space Required

8 - 13 Account Number
14 - 58 Data Set Name

59 Single Quote
60 Blank Space Required

61 - 67 Last Name or Group Adding Entry
68 - 72 Julian Date when entry was added

 the Technical Broadcast http://www.wa.gov/dis/CSD/tbfirst.htm#Broadcasts Page 38

Technical Broadcast Staff - The Technical Broadcast is
published quarterly by the Department of Information
Services (DIS). The purpose is to provide a forum for
customer information-sharing of upcoming system
enhancements and optimization tips. We invite your articles,
comments, and suggestions.

DIS is an equal opportunity employer and does not
discriminate on the basis of race, religion, color, sex, age,
nationality, or disability.

Charie L. Martin, Editor
Department of Information Services
Adams Building
1310 Jefferson ST SE
Mail Stop: 42445
Olympia, WA 98504-2445

the Technical
 Broadcast

